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1. Review of Defect Probing by CV Measurements
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2. Defects on 2D Materials 
2.1. Why (unwanted) defects are bad?

Localized wavefunctions

See slides from last lecture
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• Reduce ION
• Increase IOFF
• Reduce SS

• Slow Response

• Hysteresis

• Noise
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Ideal 2D DoS
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Defect states in the bandgap

In‐gap states

+ defects

How to experimentally observe this?

2. Defects on 2D Materials 
2.2. How defects look like in the band diagram
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We measure the capacitance between the 
top and bottom contacts ‐ 𝐶்ை் 

We have several contributions to 𝐶்ை் 
‐
‐
‐

Geometric capacitance (oxide)
MoS2 quantum capacitance
Overlap of contacts

Modelled as a series of capacitors in series/parallel
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2. Defects on 2D Materials 
2.3. CV Measurements on 2D Materials

Modelling

VG
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is the total measured capacitance

𝐶௢௫ ൌ
ఢఢబ஺
ௗ

is the geometrical capacitance

𝐶ெ௢ௌమ ൌ 𝑒ଶ ⋅ 𝐷 𝐸 is the quantum capacitance of MoS2

Parameters
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Quantum capacitance
Change of gate voltage: shift of channel potential U→
change in electron density

Luryi, S. Quantum capacitance devices. Applied Physics Letters 52, 501–503 (1988).

What is the relation between Vg and U?

For ametal you have infinite DoS – no need to raise
energy to put more electrons in the channel

For a SC you have a finite DoS (+Pauli exclusion principle):
to add more electrons you need to fill higher states

You can model this effect as an additional capacitance in
your device

Since capacitances add in series, the smaller one
dominates!

See also: https://www.youtube.com/watch?v=jSlVRmsiXuk
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We do not consider Valence band since
MoS2 is normally n‐typeMetal: infinite DoS

1L‐MoS2: 2D DoS

Geometric capacitance
Capacitance: Quantum + defects contribution 

Ideal “step‐like”DoSCharges in MoS  channel2

Defect‐states

Density of states
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𝑉௚

𝐶௚ି௖௛ ൌ
𝜕𝑄௖௛
𝜕𝑉

𝑄௖௛ ൌ 𝑒 ⋅ 𝑁 ൌ 𝑒 ⋅ න 𝑓 𝐸 െ 𝑒𝑉௖௛ ⋅ 𝐷 𝐸 ⋅ 𝑑𝐸
ାஶ

ିஶ

3. Modelling of defects
3.1. CV Measurements on 2D Materials
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Bare HfO2

Geometric capacitance

Parylene/HfO2
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Band‐tail Model

3. Modelling of defects
3.2. Model of defect DOS
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Au Oxide MoS2
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Experimentally
measured quantity𝐶௚ି௖௛ ൌ

𝜕𝑄௖௛
𝜕𝑉௚

Φெ ൅ 𝑉௢௫ ൌ 𝑉௚ െ 𝑉௖௛ ൅ 𝜒 ൅
𝐸௚
2

𝑉௢௫ ൌ
𝑄௖௛
𝐶௢௫

𝑄௖௛ ൌ 𝑒 ⋅ 𝑁 ൌ 𝑒 ⋅ න 𝑓 𝐸 െ 𝑒𝑉௖௛ ⋅ 𝐷 𝐸 ⋅ 𝑑𝐸
ஶ

ିஶ

Note how 𝑉௖௛ appears in the integral equation:

Φெ ൅
1
𝐶௜
න𝑓 𝐸 െ 𝑒𝑉௖௛ 𝐷 𝐸  𝑑𝐸 ൌ 𝑉௚ െ 𝑉௖௛ ൅ 𝜒 ൅

𝐸௚
2

3. Modelling of defects
3.2. Model of defect DOS
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HfO2 Ti/Au

Sapphire

Ti/Au

HfO2 Ti/Au

Sapphire

Resist

HfO2 Ti/Au

Sapphire

Ti/Ti/Au

Sapphire

Photoresistresis

Sapphire

HfO2 Ti/Au

Sapphire

1. Gate Patterning 2. Gate Evaporation 3. Atomic layer deposition

4. 2D Material Transfer 5. Contact Patterning 6. Contact Evaposation

4. Experimental Data
4.1. Device Fabrication
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4. Experimental Data
4.2. Example of data

The information is hidden. How to extract the 
useful information
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Experimental quantities: Physical quantities we want to find:

‐ 𝛼,𝜙 parameters to describe the defects

𝐶்ை் ൌ 𝐶௢௟ ൅
1

𝐶ெ௢ௌమ
൅

1
𝐶௢௫

ିଵ
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𝐶௚ି௖௛ ൌ
𝜕𝑄௖௛
𝜕𝑉௚

𝑄௖௛ ൌ 𝑒 ⋅ 𝑁 ൌ 𝑒 ⋅ න 𝑓 𝐸 െ 𝑒𝑉௖௛ ⋅ 𝐷 𝐸 ⋅ 𝑑𝐸
ஶ
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𝐷ሺ𝐸ሻ ൌ 𝛼𝑒
ாିா೒/ଶ

థ if 𝐸 ൐ 𝐸஼

𝑉௚

- 𝑉௚ applied voltage
- 𝐶்ை் measured capacitance
- 𝐶௜ ,𝐶௢௟    can be extracted by calculations or by 

measuring empty devices

4. Experimental Data
4.3. Finding the desired information
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5. What to do? 
5.1 Procedure

1. Clean experimental data (background, systematic errors, etc…)

2. Write physical model

3. Fit the model to the data using a reasonable number of parameters

4. Check results
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5. What to do? 
5.2 What to expect in the end?
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Code
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• Write functions for Fermi distributions, DoS

• Integrate numerically to obtain the number of electrons in the channel as a 
function of the Fermi Energy

𝑁 ൌ ׬ 𝐷 𝐸 ⋅ 𝑓 𝐸 െ 𝐸ி 𝑑𝐸

• 𝐸ி is related to the channel voltage: 𝐸ி ൌ 𝑒 ⋅ 𝑉௖௛, so we can calculate the 
charge on the channel 𝑄௖௛ ൌ 𝑒 ⋅ 𝑁 as a function of 𝑉௖௛

• BUT: 𝑉௖௛ is related to the applied gate voltage 𝑉௚ through electrostatics 

equation Φெ ൅ ொ೎೓
஼೔

ൌ 𝑉௚ െ 𝑉௖௛ ൅ 𝜒 ൅ ா೒
ଶ
, so we need to find it



Semiconductor devices II / EE‐567

29/04/2019 Exercise I ‐ Density of states 19

Code (2)

• We can use a loop to update 𝑉௖௛ from an initial guess until calculation 
converges:
1. Initial guess: 𝑉௖௛଴

2. Calculate 𝑄௖௛ 𝑉௖௛଴

3. Calculate Φெ ൅ ொ೎೓ ௏೎೓
బ

஼೔
െ 𝑉௚ ൅ 𝜒 ൅ ா೒

ଶ
ൌ 𝑉௖௛ᇱ

4. Repeat step 2‐3 with 𝑉௖௛ᇱ to find 𝑉௖௛ᇱᇱ
5. Iterate until Δ ൌ |𝑉௖௛௡ାଵ‐ 𝑉௖௛௡ | is smaller than the desired precision
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Code (3)

• ALTERNATIVE: in an un‐physical but correct way, we can calculate 𝑄௖௛,𝑉௚ for a 
wide range of 𝑉௖௛ values and then take the ones corresponding to the 𝑉௚ we 
use in our experiment!

• Once we have calculated 𝑄௖௛,𝑉௚ we calculate capacitance from డொ೎೓
డ௏೒


